
1

The Concrete Architecture of Google Chrome
Assignment 2

November 9, 2018 (Fall 2018)
Thick Glitches

Alastair Lewis (15ahl1@queensu.ca)
Andrea Perera-Ortega (15apo@queensu.ca)

Brendan Kolisnik (15bak2@queensu.ca)
Jessica Dassanayake (15jdd1@queensu.ca)

Liam Walsh (15lcw1@queensu.ca)
Tyler Mainguy (16tsm@queensu.ca)

Abstract
A concrete architecture for the Google Chrome web browser was derived through analysis of
Chromium, an open-source version of Google Chrome. The concrete architecture was developed
through the analysis of source code using Understand, a software intended to help software
developers to gain insight into their source code.

Chrome uses an object-oriented architecture style, depicted by its five subsystems and the
abstraction between these subsystems. The reflexion analysis technique was applied to the
derived architectures to determine what dependencies were justified and what dependencies were
unjustified for the unexpected dependencies in the concrete architecture. The browser and
networking subsystem were studied in more detail to determine their concrete architectures and
any additional dependencies from their subsystems that were not accounted for in the conceptual
architecture of the browser and networking subsystems. The concrete architectures have more
dependencies than their conceptual counterparts; this is due to their more factual nature since
they are derived from source code rather than documentation. While more dependencies exist,
Chrome’s system is organized in a way that is still optimized for performance. In addition to the
derivations of the concrete architecture, use cases are included in this report to further
demonstrate how the subsystems interact.

The in-depth study of Chrome on a concrete level allowed for an increased understanding of the
system and what can be added to enhance it. A proposed feature is Chrome Safe Mode, which
utilizes several subsystems to censor inappropriate content. Further research will be carried out
for this feature, however, an overview of the feature is presented in this report.

Introduction and Overview
After previously deriving the conceptual architecture of Chrome, it was determined that the
development of a concrete architecture for Chrome was necessary to gain a deeper understanding
of the major subsystems and their interactions. Since the concrete architecture is much less
abstract than the conceptual architecture, it was necessary to analyze the source code in order to
create the most accurate version of the concrete architecture. To do this, the software Understand
was used to study Chromium’s code. After revisions of both the concrete and conceptual

2

architectures using this tool, research, and use of the reflexion model, a final concrete
architecture was derived that consists of five distinct subsystems.

The browser and networking subsystems were determined to be two of the most significant
subsystems of Chrome. Following the analysis of the source code, it was decided that the
browser is made of five subsystems that interact with each other, while networking contains
three. In-depth architectures, both conceptual and concrete, were created to display the
interactions between the subsystems within browser and the Chrome subsystems that browser’s
subsystems are dependent on. This process was also carried out for the networking subsystem.

Both on the highest level (Chrome) and lower levels (e.g. browser and networking), the
subsystems are organized in an object-oriented architecture style. The systems are highly
optimized for performance which is due to several factors. Firstly, the ability of the system to run
processes concurrently is a significant reason for Chrome’s success and popularity. Additionally,
the system’s dependencies are set in a way that allows for high cohesion and low coupling.
However, the subsystems are less independent as expected from the creation of the conceptual
architecture. While the concrete architecture has more dependencies than the conceptual
architecture, the arrangement minimizes coupling as much as possible to increase performance.

By having a greater understanding of the architecture, we were able to come up with a new
Chrome feature to be proposed: Chrome Safe Mode. Knowledge of the subsystems allows us to
have a good idea about how to implement the feature to enhance Chrome. This proposal will be
pursued further in the future to see how we can improve the web browser in its current state.

Concrete Architecture

Derivation Process

The original conceptual architecture was reflected on to see if any revisions could be made. By
revising the conceptual architecture, a solid foundation was created to form the concrete
architecture of Chrome. By using the Understand software, we were able to analyze the source
code and come to conclusions about what the major subsystems are. Specifically, we observed
the metrics treemap, organized by lines of code, to determine the subsystems of Chrome. We
concluded that more lines of code meant a greater significance for that particular module,
however, we did not solely base our conclusions off this. The feature also allowed us to view
dependencies between the subsystems. A possible concrete architecture was developed, but
ultimately, the final version of the concrete architecture was derived after conducting reflexion
analysis to determine which dependencies were justified and which were unjustified.

Revised Conceptual Architecture

3

With additional research, it was determined that changes should be made to the initial conceptual
architecture that was derived. There were several key changes made between the original
conceptual architecture (Figure 1) and the revised conceptual architecture (Figure 2). By
observing the source code, we noticed that the plugins subsystem could be removed as it was not
a key system. Also, we realized a need for the storage subsystem to act as a dedicated module for
read and write access to the host machine. The rendering engine was renamed to be the content
engine because we found that the rendering of the applications is broken up into two distinct
rendering process; the renaming allowed us to be more specific. It was also determined that the
browser depends on the UI as opposed to the UI depending on the browser. Furthermore, it was
decided that the browser is dependent on the content engine and that the content engine is not
dependent on the browser.

Alternative Concrete Architecture

The alternative concrete architecture we derived had several key changes from the conceptual
architecture developed in assignment one. We changed the render engine to the content engine to
reflect the fact that the browser and content engine subsystems both have their own rendering
processes. We removed the plugins module as we decided it was not a key aspect of the

4

architecture and instead added a storage subsystem to provide functionality for reading and
writing directly to the host computer.

Final Concrete Architecture

Our final concrete architecture contains all of the same subsystems as the alternative but with
some differences in the dependencies between subsystems which will all be discussed in the
reflexion analysis section.

Reflexion Analysis

Justified/Unjustified Dependency From Dependency
To

Rationale

Unjustified UI Networking The UI reuses networking's
platform-independent code for resolving local
path names

5

Justified Storage Networking Storage is able to directly handle blob
downloading/uploading. Blobs are not likely to
be malicious. Blobs contain lots of data to route
through multiple subsystems, so a direct link is
beneficial for efficiency

Justified UI Browser UI needs operating system access to use Apple's
framework to fill in the taskbar. Chrome is
responsible for drawing anything that isn't tab
content

Justified UI Content Engine UI needs to interact with the content engine for
features like: Developer Tools. Chrome shell
console, inspect element, etc

Justified Content Engine Storage Interacts with storage for file API, blob storage
and quota manager

Justified Content Engine Network Requires internet access for handling
websockets, hyperlinks, CDN, and disk caching
(unconfirmed downloads)

Justified Content Engine UI Every time UI needs something
painted/rendered, it communicates directly with
the content engine. All event objects in UI are
depended on by the content engine

Subsystems

Browser
The browser subsystem is the central subsystem in the application and contains the system’s key
processes to run the other subsystems. The browser contains its own rendering process, separate
from the content engine which is able to render the section of Chrome containing the search bar,
bookmarks, tab selector and the settings menu.

User Interface
The user interface is the subsystem that is responsible for displaying rendered content from the
browser and content engine and provides the interface for the user to interact with the browser. It
is able to detect mouse presses, keystrokes and other activity from the user.

Networking

6

The networking subsystem is responsible for sending and receiving data from the internet. The
networking subsystem is the only one that is able to function independently from all the other
subsystems as it has no dependencies.

Content Engine
The content engine is the subsystem within Chrome that is responsible for parsing and rendering
all of the content that is received in HTML/JS/CSS format and displaying it to the UI [6].

Storage
The storage subsystem is responsible for providing reading and writing capability directly to the
host machines file system. This provides the Chrome with the ability to have data persistence
which is useful for a number of features in the browser.

In-Depth Architecture

Conceptual Architecture Browser Subsystem

Concrete Architecture Browser Subsystem

7

Browser Subsystem Internal Reflexion Analysis

Justified/Unjustified Dependency From Dependency
To

Rationale

Justified Browser Engine Disk Utility Browser Engine has direct dependency to write
cookies and more straight to storage.

Justified Renderer Browser
Engine

Renderer depends on Browser Engine due to
implementation requirements such as drawing
and displaying the menu bar for OSX which is
handled by the OS.

The conceptual architecture for the browser system is both object-oriented and layered style. The
top layer being the app and browser engine systems and the bottom layer being the utility,
renderer, and password manager systems [16]. The bottom layer implementations would not
need the top layer while the top layer depends on the bottom layer. As with other systems in
Chrome, the architecture is object-oriented to increase cohesion and decrease coupling.

The concrete architecture for the browser system somewhat violates the layering design as the
Renderer depends on browser engine due to implementation requirements such as displaying the
menu bar for OS X which is drawn by the OS. However, this is very limited. The concrete
architecture is also object-oriented to decrease coupling and allow implementations of systems to
be changed such as when the content engine switched to Blink from Webkit [6].

Conceptual Architecture Networking Subsystem

Concrete Architecture Networking Subsystem

8

Networking Subsystem Internal Reflexion Analysis

Justified/Unjustified Dependency From Dependency
To

Rationale

Justified Certificates Utilities Certificates uses libraries from the utilities
subsystem to help hash, unhash, encrypt,
decrypt, etc.

Justified Certificates Requests &
Connections

SSL sockets are configured by the two
subsystems working together. HTTP request
headers that require signing are sent to and from
the certificates subsystem.

The conceptual architecture for networking is object-oriented. The main subsystem is the
Requests & Connections subsystem. The reason this subsystem is not divided into two separate
subsystems is that the processes for requests and connections are not very cohesive, and coupled
substantially to each other. Most work is done by the Requests & Connections subsystem, with
frequent calls to the Utilities subsystem for tasks such as logging, using cookies, disk caching,
and more. The Certificates subsystem is used to create certificates for the user’s network
protocols.

The concrete architecture for networking is even more coupled than it was initially estimated to
be in the conceptual architecture. This being said, we believe that the coupling of the networking
subsystem is not inherently detrimental to its operability. In fact, the tight coupling helps to
increase the speed of operation. As well, since the low-level methods of network communication
and internet protocols are standardized, the networking subsystem will almost never need to be
changed. This makes its high coupling a non-issue.

9

Proposed Feature
Our proposed feature for the enhancement of Chrome is “Safe Mode”. Enabling this feature
within settings will censor instances of pre-set blacklisted words on a web page or entire
websites deemed as inappropriate. In addition, it will also censor and prevent inappropriate
content like images from being shown to the user on the screen. It will be possible to activate and
deactivate Safe Mode with a password. We feel that this proposed feature is ideal for children as
well as people working in professional and/or corporate environments. This proposed feature
will affect multiple subsystems, including the browser, UI, storage, and content engine
subsystems. Within the browser subsystem lies the password manager subsystem which deals
with the functionality of the password whereas the password is actually stored in the storage
subsystem. Browser also deals with chrome settings, where Safe Mode can be enabled and
disabled. The content engine subsystem is affected because it is where the HTML, CSS, and JS
parsing occurs. At the parsing stage, inappropriate words and content will be censored.
Unsuitable words will be checked through when the HTML is parsed. Inappropriate images will
be checked by analyzing metadata. Metadata that contains inappropriate words or that comes
from an inappropriate source will trigger the Safe Mode to censor the content. Finally, UI
subsystem is affected because a new button icon will be displayed and implemented into the UI
for the browser to toggle on/off.

Concurrency

Concurrency is the ability of a program to run its processes in parallel. Chrome was designed
with a multi-process architecture, which allows for concurrency of processes that it runs. This
means that each tab and plugin exist in their own processes, independent of one another[13]. The
way they are able to implement this is by running a main process in the browser system that
communicates and facilitates with the individual render processes through IPC [4][3].

The browser process has an object, called the RenderProcessHost, that exists on the main thread
of the browser. The main job of the RenderProcessHost is to facilitate communication from the
child processes to other systems in the architecture, like networking or storage[13]. In the main
thread of the content engine, there is a RenderProcess object, which corresponds to a render
process (for plugins, tabs, etc.)[13]. This process will make network and file system requests,
and cross-thread communication requests through the RenderProcessHost, which will then
facilitate it for them.

The benefits behind having a parent browser process and independent (concurrently running)
render processes are efficiency, security, and reliability[13]. Efficiency can be achieved as each
render process makes requests through its own IPC with the browser process, which then will
make those requests for the render processes[4]. By confirming the requests made by render
processes are asynchronous non-blocking, then each request can be made independently of one
another. This confirms that no requests have to wait for one another, and slow requests cannot
hold up requests made by other processes. This results in a faster and efficient execution. From a
security standpoint, separating (or “sandboxing”) processes and making them run requests

10

through a parent process is beneficial. By sandboxing processes from one another, no malicious
web pages/plugins can gain access to other processes (and their data). By running all network
and file system requests through the parent RenderProcessHost, it confirms that no malicious
render processes can make requests/run scripts that access the file system of the host
machine[13]. Reliability is achieved by removing the single point of failure, which was
originally the browser process. By delegating tabs and plugins to their own processes, this
confirms that any hung/malicious processes cannot slow down/crash your entire browser.

How the Architecture Supports Future System Changes
The overall architecture style is object-oriented and some internal systems are layered so one
advantage is that implementations of systems can be changed without affecting the overall
system. For example, changing the implementation of the content engine would not affect the UI
system. The IPC cannot be easily changed as it is tightly coupled into multiple systems including
the rendering engine, plugins, and the browser system. This architecture is very extensible. New
systems can be added as objects and referenced without changing the implementations or
communication systems of other systems. Chromium is the open source code that Chrome is
based on which allows the community to contribute new features that can be implemented into
production Chrome. Leveraging this strategy, the Chrome team can get the community to
implement many of the new features going forward (while monitoring for performance and
security). Chromium development also allows new features or web standards to be implemented
more quickly in Chrome than in some other browsers helping to keep Chrome on the bleeding
edge.

External Interfaces
There are multiple external interfaces that Chrome communicates with: GUI, file system, and
network. The GUI allows the browser to process user input events and send visual output to the
user by utilizing the UI. The file system allows Chrome to interact with the local files stored on
the host machine. Chrome is limited to accessing the files that the operating system has given it
permission to read and write to. The browser is able to interface with the network through the
networking subsystem, which allows it to send and receive content that is not stored locally.

Use Cases
User Logs into Website and Chrome Saves Username and Password

11

This sequence diagram describes a user entering a password into a site, confirming the form
submission, and saving their password for the site in chrome. Our diagram assumes the user
successfully logged into the page.

After the request was successful, the networking subsystem passes a mojo message to the
browser subsystem, indicating a successful request[18]. The browser uses this message to run the
OnLoginSuccessful() method, which is the start of allowing the user to save their password
through chrome[18]. After this is executed, a widget is displayed on-screen (passed from
browser to UI), prompting the user to save their password in chrome. After the user clicks “yes”,
then the response is sent back to the browser system. After that, the addLogin function is called,
with parameter sanitized_pending, which deals with SQL special characters, and other
potentially malicious text[18]. After the sanitization, the password is then written to the
database[18]. There is nothing displayed to the user, but now the password can be accessed in
future logins.

Downloading and Displaying a Web Page with JavaScript

This sequence diagram describes the event of a user rendering a web page with Javascript. This
chain of events begins after the user clicks a hyperlink on a web page. This mouse event is sent
to the content engine, which is the first step in the rendering process. It runs OpenURL with a
boolean value indicating whether or not to make the request in the current tab, or to create a new
tab process and continue the request there, and leave the old one as is[18]. Once this is
determined, the ResourceDispatcher will start an asynchronous network request, which must be
facilitated through the browser component[13]. Once this IPC message is sent to the browser[4],
the ResourceDispatcherHost will generate a URLRequest object using the
CreateURLRequestJob() method[17]. After the URLRequest object is generated, it is passed via

12

IPC to the networking system, where StartJob(job) is called. This will trigger the generation of a
HttpStream object, which will be responsible for retrieving the request data from the server. This
call is asynchronous (as it is a stream of data being read in), and will continue to execute until the
server has finished returning data [17]. Once the stream is open (and receiving data), the
responses are returned in a URLRequest object, which notifies the ResourceDispatcherHost of
the amount of data read, and a pointer to the location of the data[17]. The URLRequestJob will
continue to execute until the data has finished being read in. Once the data has been read in, a
pointer to the data is sent via IPC to the content engine component[4], so the response can be
rendered. From here, the web page HTML is parsed[13]. While the HTML is being parsed, it is
watching for any <script> tags, indicating Javascript code. Once a script tag is found, control is
handed to the ScriptCompiler object, which will call the Compile method to compile the
javascript. Once the HTML has been parsed, the HTMLDocumentParser object is used to run the
Finish method, indicating the page has been rendered fully[13]. It will then send the painted page
through IPC to the user interface component. The UI will then display the rendered web page.

Team Issues
There are a multitude of issues that arise for development teams when working on a large scale
application such as Google Chrome. Unjustified and/or unclear dependencies make it particularly
difficult for developers working across systems to understand certain aspects of the code that
they were not involved with during implementation. Since Chrome implements Chromium’s
source code and anyone is able to contribute (open source), code contributed by random
individuals not involved in any Chrome development team can be hard to trace and understand,
especially if their contribution is a hack solution. Additionally, more dependencies in the
concrete architecture versus the conceptual architecture leads to suboptimal coupling and the
necessity for teams working across different subsystems to communicate efficiently. Finally, the
migration of Chrome’s proprietary interprocess communication system (IPC) to Mojo improved
inter- and intra-process communication handling which made concurrently running systems
easier for development teams to work with. However, this migration and change was difficult for
developers to adapt to since it affected all subsystems and lead to a lot of time and money spent,
as well as a lot of frustration.

Limitations and Lessons Learned
Throughout the course of this assignment, we encountered several limitations that required our
team to work together and overcome them. Our most prevalent issue during this project was the
overwhelming nature of the source code of Chrome. A combination of things made the source
code difficult from the start. These include the massive number of lines of code and the fact that
the source code is written in C++, a programming language no one in our group was significantly
experienced with. Our limited knowledge of this language combined with the lack of comments
in the source code made it challenging to understand what each function was doing. In addition,
it is also easy to lose track of scope when tracing through the code and we found it difficult
knowing when to stop. Another challenge we encountered was the steep learning curve of the
program Understand. Before we sought out help from the TAs, the program would crash on us
often, leaving us frustrated with the software, and unaware of our next steps. Finally, due to the
increased amount of information we needed to research and the more technical nature of it, our

13

group was required to organize meetups far more often than the last assignment. Due to the
increased number of meetings coinciding with weeks filled with midterms, group members were
under significantly more stress compared to the previous assignment.

Fortunately, challenges are often accompanied with valuable lessons learned. Our unfamiliarity
of C++ syntax turned into a valuable lesson and resulted in our group learning the basics of a
new programming language. Our frustration with Understand forced us to reach out for help, and
from this, we learned two lessons. First, after we spoke with TAs, we gained an understanding of
this new software and secondly, we learned that it is important and okay to ask for help when
one needs it. Finally, taking on a large group project like this developed our group’s
organizational skills as a whole.

Conclusion
In summary, the derived concrete architecture of Google Chrome was formed using the
conceptual architecture, source code analysis, and reflexion model. This new architecture model
presented several unexpected dependencies, which demonstrated that the subsystems are less
dependent than what we originally thought when deriving the conceptual architecture. As a result
of this, coupling was higher than expected. However, the organization of the subsystems in its
object-oriented style is set in a way to minimize coupling as much as possible. These
observations carried over to the in-depth conceptual architectures of the subsystems,
demonstrated by our analysis of the browser and networking subsystem.

A new feature that we discussed was Chrome Safe Mode, which we believe would be widely
accepted by many users for both personal use (filtering for children) and business use (filtering
content to be work-appropriate). In order to keep Chrome competitive in its market, new features
are always being added. This is possible as a result of the object-oriented architecture style with
some layering. This allows for subsystem implementations to be modified without compromising
the entire system.

Data Dictionary/Naming Conventions

Bitmap: A mapped output generated by the rendering engine to be displayed in the user interface
graphically
Blob: Acronym for “Binary Large Object”, a large container of binary data which is passed
through the system and is generally not malicious due to the object not being executable.
Browser: The main module in the program that controls data exchange across modules in the
application. It is the only module in the architecture that directly interacts with the operating
system in order to have functionality for data persistence and resource allocation.
Cohesion: The level of separation of functionality between modules in the software. A highly
cohesive system will have modules that perform very specific tasks tailored to their attributes.
Concurrency: Multiple software processes running at the same time by utilizing multiple
processing cores.

14

Coupling: The number of dependencies your program has in between its various modules. It is
optimal to have low coupling in your system so that if one module malfunctions there is minimal
effect on the other modules in the architecture.
CSS: (Cascading Style Sheets) Lightweight coding language that directly interacts with HTML
to allow web pages to have custom appearances and layouts.
Data Persistence: The ability of an application to access the host machines file system in order
to read and write to files. It allows for the storage of various types of data such as history,
bookmarks, and passwords so that when the application is closed and reopened it still has data
stored from the previous browsing session.
GET Request: A request that is sent out into the internet with relevant data for the query stored
in the request header.
HTML: (Hypertext Markup Language) The format in which web pages are written in. Uses text
with ‘tags’ surrounding them to describe how they should look and appear on the page.
HTTP: (Hypertext Transfer Protocol) The protocol used by the internet to send HTML across
the web from servers to clients.
IPC: (Interprocess communication) Set of programming interfaces that allow for communication
and coordination between software processes running concurrently.
JavaScript: An event-driven programming language that shares similar syntax to Java that
allows web pages to be interactive and have features that would otherwise be impossible with
only HTML.
Modularity: The process of subdividing software into individual components. It results in more
understandable code and allows for changes to individual modules without having it affect all
others.
Multi-Processing: Software that is designed and optimized to run on computers with multiple
processing cores.
Object-Oriented Architecture: Architecture style with multiple, single-purpose ‘Objects’ that
have interfaces to interact with other objects in the system. Objects are not concerned with the
implementation of the other objects in the system, only with the data getting passed to them.
POST Request: A request that is sent out into the internet with relevant data for the query stored
in the request body as opposed to the header
Reflexion Analysis: The process of examining, understanding and explaining unexpected
dependencies in between subsystems of a concrete architecture with the objective of deciding
whether or not to keep them in the architecture
Sandbox: The programming practice that segregates a certain set of functionality to a restricted
amount of resources, file access, and operating system interactions on the computer in order to
increase security. This way, it the sandboxed portion of the application crashes or is
compromised, it will have no serious affect on the rest of the system.
UI: (User Interface) The graphical representation of the application that interacts with the user to
show/get input and output from them.
URL: (Uniform Resource Locator) A string of text that identifies a specific web page on the
world wide web. These are used by the web browser to retrieve specific pages requested by the
user.

15

References

[1] “Blink.” The Chromium Projects, www.chromium.org/blink.
[2] “Desktop Browser Market Share Worldwide.” StatCounter Global Stats,

gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-201801-201810-
bar.

[3] “Google Chrome.” Wikipedia, Wikimedia Foundation, 16 Oct. 2018,
en.wikipedia.org/wiki/Google_Chrome.

[4] “Inter-Process Communication (IPC).” The Chromium Projects,
www.chromium.org/developers/design-documents/inter-process-communication.

[5] “Multi-Process Architecture.” The Chromium Projects,
www.chromium.org/developers/design-documents/multi-process-architecture.

[6] “The Security Architecture of the Chromium Browser”. Barth, A., Jackson, C., Reis, C., &
Google Chrome Team, 16 Oct, 2018.
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf

[7] “Multi-Process Architecture” Chromium Blog,
https://blog.chromium.org/2008/09/multi-process-architecture.html

[8] “Network Stack”, The Chromium Projects,
https://dev.chromium.org/developers/design-documents/network-stack

[9] “Disk Cache”, The Chromium Projects
https://dev.chromium.org/developers/design-documents/network-stack/disk-cache

[10] “HTTP Cache”, The Chromium Projects
https://dev.chromium.org/developers/design-documents/network-stack/http-cache

[11] “CookieMonster”, The Chromium Projects
https://dev.chromium.org/developers/design-documents/network-stack/cookiemonster

[12] “Why is Chrome Using So Much RAM? (And How to Fix it Right Now). Albright, Dann,
17 June, 2017
https://lifehacker.com/why-chrome-uses-so-much-freaking-ram-1702537477

[13] “Explore the Magic Behind Google Chrome”. Zeng, Dico, 21 Mar, 2018
https://medium.com/@zicodeng/explore-the-magic-behind-google-chrome-c3563dbd2739

[14] “Which WebKit Revision Is Blink Forking from?” Google Groups, Google, 18 Apr. 2013,
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/J41PSKuMan0/gD5xcqicqP8J.

[15] “Understanding How the Chrome V8 Engine Translates JavaScript into Machine Code.”
FreeCodeCamp.org, FreeCodeCamp.org, 20 Dec. 2017,
https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7e
b8af964.

[16] Kosaka, Mariko. “Inside Look at Modern Web Browser (Part 1) | Web | Google
Developers.” Google, Google, Sept. 2018,
https://developers.google.com/web/updates/2018/09/inside-browser-part1.

[17] “Life of a URLRequest”
https://chromium.googlesource.com/chromium/src/+/master/net/docs/life-of-a-url-request.md?fbclid=IwAR0k_r8K
KCXzXAaRRV_C7xZASVR3cX-IHmh0MK4wyHLvxwea5wj25uTOIlI
[18] “Code Search”, Google Chrome. https://cs.chromium.org/

http://www.chromium.org/blink
http://gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-201801-201810-bar.
http://gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-201801-201810-bar.
http://en.wikipedia.org/wiki/Google_Chrome
http://www.chromium.org/developers/design-documents/inter-process-communication
http://www.chromium.org/developers/design-documents/multi-process-architecture
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
https://blog.chromium.org/2008/09/multi-process-architecture.html
https://dev.chromium.org/developers/design-documents/network-stack
https://dev.chromium.org/developers/design-documents/network-stack/disk-cache
https://dev.chromium.org/developers/design-documents/network-stack/http-cache
https://dev.chromium.org/developers/design-documents/network-stack/cookiemonster
https://lifehacker.com/why-chrome-uses-so-much-freaking-ram-1702537477
https://medium.com/@zicodeng/explore-the-magic-behind-google-chrome-c3563dbd2739
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/J41PSKuMan0/gD5xcqicqP8J
https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://chromium.googlesource.com/chromium/src/+/master/net/docs/life-of-a-url-request.md?fbclid=IwAR0k_r8KKCXzXAaRRV_C7xZASVR3cX-IHmh0MK4wyHLvxwea5wj25uTOIlI
https://chromium.googlesource.com/chromium/src/+/master/net/docs/life-of-a-url-request.md?fbclid=IwAR0k_r8KKCXzXAaRRV_C7xZASVR3cX-IHmh0MK4wyHLvxwea5wj25uTOIlI
https://cs.chromium.org/

